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Abstract

We describe an approach to portable
grammar-based language modelling in
which all models are derived from a
single linguistically motivated unification
grammar. Domain-specific CFG language
models are produced by first specialising
the grammar using an automatic corpus-
based method, and then compiling the re-
sulting specialised grammars into CFG
form.

We present results showing that recognis-
ers for multiple, fairly different, domains
can be derived from a single general gram-
mar. The process remains tractable as the
size of the general grammar increases, and
also scales well with the size of the train-
ing corpus used. We also show that a
simple method for compiling unification
grammars into CFG form can be success-
fully applied to grammars containing large
numbers of features, if it is enhanced by
suitable interleaving of the expansion and
filtering stages.

norm. This lack of data also impacts research do-
mains that are relatively novel, such as dialogue in-
terfaces to robots. Given the difficulties involved in
using statistical modeling with limited speech data,
we think it is important to investigate ways in which
grammar based models can be efficiently and effec-
tively produced.

Commercial speech platform vendors like Nuance
(Nuance, 2003) and SpeechWorks (SpeechWorks,
2003) have primarily focussed on grammar-based
language models, typically implemented in some
variant of context free grammar (CFG). However,
even moderate sized CFGs are tedious to write and
difficult to maintain, compared to grammars written
in higher level formalisms such as unification based
grammars. For each rule in the higher level gram-
mar there are likely to be many rules, very similar to
each other, in a comparable CFG. The higher-level
formalism provides a more compact representation
and expresses linguistic dependencies and relations
more transparently and explicitly than a correspond-
ing CFG.

Compiling the CFG language model from a gram-
mar written in the higher level formalism is one step
toward producing a CFG language model efficiently
while taking advantage of the attractive properties of
the higher-level formalism. Techniques for compila-

1 Introduction tion from unification grammars to CFGs have been

Grammar based language models for constrainirdjscussed in (Moore, 1998; Chappelier et al., 1999;
speech recognition are particularly attractive as alfiefer and Krieger, 2000; Dowding et al., 2001;
alternative to statistical models in domains that lackkayner et al., 2001a; Bos, 2002).

extensive speech corpora. For commercial dialogue A further step in making the production of gram-
systems, the case in which there is not enougmar based language models efficient is to avoid the
speech data to train effective statistical models is theverhead of creating a new unification based gram-



mars from scratch for each new domain. Grammars1.
for different domains can be sensibly viewed as sub-
sets of the larger grammar of a language. From the
point of view of portability, having a single general
unification based grammar for a language and de-
riving domain-specific grammars from it is clearly
preferable to building individual grammars for each
domain by hand. The obvious advantage is that 2-
grammar rules are reusable and need only be writ-
ten once. Consequently, effort that would have gone
into developing the grammar for each domain can
instead be put into refining the general grammar,
thereby benefiting all subsequent domains.

In summary, the overall approach we are advo- 4,
cating is to develop a general domain-independent
unification grammar for each language, semi-
automatically derive specialised versions of this
grammar for each new domain, and compile these
specialised grammars down first into CFG language
models and then into concrete recognisers. Itis clear

An environment for developing and debugging
typed unification grammars, whose main com-
ponent is a compiler that converts grammars
of this form into left-corner parsers, using a
version of the algorithm described in (Moore,
2000).

A general linguistically motivated unification
grammar for a substantial fragment of English,
including an accompanying core lexicon.

3. Tools to support corpus-based specialisation of

the general grammar.

A compiler that translates typed unification
grammars into CFG language models ex-
pressed in Nuance Grammar Specification Lan-
guage (GSL) formalism. These language
models can then be compiled into Nuance
recognition packages using the Nuance Toolkit
nuance- conpi | e utility.

that this is an ambitious programme, and that there
are many potential problems. All these components are implemented on top of
In the current paper, we describe a series of exgicstus Prolog and the Nuance Toolkit. In the rest of
periments, carried out using thexx system, that the section, we will describe the general grammar,
provide surprisingly positive answers to several ofhe specialisation tools and the unification grammar
the obvious questions. Our main claims are as foto CFG compiler.
lows:
2.1 The general grammar
e Itis possible to derive multiple domain-specificThe general grammar currently contains 145 phrase-
recognisers from a single linguistically mo-structure rules and 72 features, and is a greatly ex-
tivated unification grammar, using examplepanded version of the grammar described in (Rayner
based methods driven by small corpora. et al., 2000c), which in turn is loosely based on the
. iy , Core Language Engine grammar (Pulman, 1992).
* Th_ese recognisers are competitive with ONCR is built according to reasonably standard linguis-
built from hand-coded grammars. tic principles and covers a large proportion of the

« The methods have good scalability propertie§?a$ic constructions of English, including the fol-

both with respect to the number of domain_lowing: declarative clauses; Y-N questions; WH-

specific training examples and with respect t§uestions with movement of NPs, PPs, ADJPs and
the size of the general grammar. AI_Z)VPs; empedded Y-N and WH-questions; imper-
atives; elliptical NPs, PPs, ADVPs and sequences
of these constituents; impersonal subjects; passives;
verbal and sentential adverbs; a wide variety of sub-
This section presents an overview»ofx. Xxx isa  categorisation types of verb, including intransitives,
suite of software modules, which extends the Opepansitives, ditransitives, verbs taking PPs, verbs tak-
SourcerREGULUS system (Rayner et al., 2001a). Itjng particles, equative and predicative “be”, aux-
consists of the following main components: iliaries, modals, verbs taking “-ing” complements,

The name of the system has been suppressed intheinteréggmt'v_e_S and “to” VP complement§, verbs taking
of preserving anonymity. propositional and embedded question complements

2 Thexxx system



Personal Satellite Assistant (PSA)
“affirmative”

“go to flight deck”

“mid deck and lower deck”

“measure pressure”

“what were oxygen and c o two one minute ag
“when did the temperature reach twenty degre
“go to the crew hatch and close it”

“close all three doors”

Home Automation (HA)

“is there a tv in the living room”

“which devices are switched on”

“turn on the kitchen light and the stove”

“dim the light to fifty percent”

“thank you”

and verbs taking adjectives; postmodification of NPs
and VPs by PPs, ADJPs, ADVPs, relative and re-
duced relative clauses, numbers and names; use of
NPs as temporal adverbials; postpositions; date and
time expressions; conjunction of NPs, PPs, AD-
0" JPs, DETs and clauses; possessives; pronouns; bare
es’determiners; prenominal adjectives and compound
nominals; measure phrases; complex DETS; num-
bers; correction utterances; interjections; and po-
liteness phrases. The grammar includes a flexible
mechanism for specifying domain-specific lexical
sortal constraints, which for example makes it possi-
ble for a transitive verb to constrain the sortal type of
its direct object, or for a noun to constrain the sortal
type of a pre-modifying adjective.

Travel Deals (TD)

“holidays in paris under two hundred pounds”
“i want something leaving from stansted”

“in spain during may or june from gatwick”

“is there anything in italy before may tenth”
“give me a winter brochure”

“do you have three star or four star”

The original grammar was developed for a
robotic command and control domain (Rayner et al.,
2000b). Further development work has been system-
atically carried out by extending it to cover five more
domains: a home automation application (Rayner
et al., 2001b); an ATIS-like travel planning applica-
tion; a medical speech translator (Rayner and Bouil-

Medical Speech Translator (MST)

“do you often have headaches in the morning”
“is the pain in the front of your chest”

“does the pain spread to the left arm”

“have you had chest pains for more than a weg
“are the headaches relieved by stress removal
“how severe are the symptoms”

“is the frequency of the attacks increasing”

lon, 2002); an intelligent procedure assistant (Aist
et al., 2002); and a mobile geology assistant. Exam-
ples of typical utterances for each of these domains
are shown in Table 1. Transcribed corpora of at least
ak” several hundred utterances exist for all the domains,
" and have been used to debug the grammar coverage.

2.2 The grammar specialisation tools

Intelligent Procedure Assistant (IPA)
“next step”

“go back”

“go to step three point two”

“no i said go to step five”

“set alarm for twelve minutes from now”
“record a voice note on step seven”
“delete voice note on step four point one”
“increase volume”

“say that again”

XXX implements a version of the grammar speciali-
sation scheme which extends the Explanation Based
Learning method described in (Rayner et al., 2002).
A grammar built on top of the general grammar is
transformed into a specialised unification grammar
in the following processing stages:

1. The training corpus is converted into a “tree-
bank” of parsed representations, using the left-
corner parser representation of the grammar.

Mobile Agents (MA)

“take a picture of me”
“boudreaux follow me now”
“return to the hab”

. Each parsed representation in the treebank is
processed into one or more specialised uni-
fication grammar rules, using the EBL algo-
rithm (van Harmelen and Bundy, 1988; Rayner,

“start tracking my physiological sensors”

1988).

Table 1: Example utterances for domains currently 3.

covered by the general grammar

Duplicate specialised rules are merged, so that
each unique rule is tagged with the number



of training examples from which it could havethe size of the expanded rule-space by performing
been derived. the singular variable eliminationtransform, and it
. . is also possible to filter the space of expanded rules
4. Each rule is subjected to a binarisation transy, time linear in the number of rules.
form, to ensure that no rule in the final set has For grammars as large as the general grammar
more than two daughters. described in Section 2.1, the methods used by the

The EBL algorithm performgrammaticalspe- REGULUS compiler turn ogt to be inadequate; the.
cialisation; it creates new grammar rules by mergingPace Of expanded rules is too large to generate in
the constraints present in existing rules. Thus, in ak® entirety. TherREGULUS compiler breaks down
air travel domain, an example like “show me flightg0t only on the general grammar itself, but also on

to Boston” might induce a rule schematically of the_specialised grammars der_ived from it. The problem
form is not the number of rules in the grammar, but rather

the number of features, which is unaffected by the
S->V, NP, NP specialisation process; the size of the expanded rule
The features on this derived rule will contain variouspace increases exponentially with the number of
constraints, the exact nature of which will depend ofeatures. Other experiments showed thattbsIN|
the original general grammar. With the grammar oéompiler (Moore, 1998) was similarly incapabable
Section 3.2, the derived rule will for example con-of compiling these grammars.
strain the first daughter NP&ase feature to unify It does however turn out to be possible to com-
with the valuenonsubj , and itsnp_t ype (sortal) pile grammars with large numbers of features by
feature to unify with the value of the correspondingadding a further refinement to the enumerative ex-
i ndobj _t ype feature on the V. pansion algorithm, which interleaves the expansion
In general, the coverage of a specialised grammd filtering phases. Inxx, the set of features is
mar derived using the EBL method is a strict subdivided into an ordered list of subsets; each subset is
set of the coverage of the original grammar, in @ turn expanded non-deterministically, and the re-
sense made precise in (Rayner et al., 2000a). Thkglt is then filtered using the algorithms of (Rayner
loss of coverage is compensated by the specialised al., 2001a) before proceeding to the next subset.
grammar’s simpler structure, which typically pro-The experiments in Section 3.2 show that compile

duces faster processing and decreased ambiguity.tifhes still increase as the feature set expands, but
practice, the net result is often that the specialise@imy slowly.

grammar yields more accurate results than the orig-

inal one, both for text-based parsing (Samuelsso® Experiments

and Rayner, 1991; Samuelsson, 1994) and for spo-

ken language processing (Rayner et al., 2002).  This section describes a series of experiments which
. empirically investigate the claims made in Section 2.

2.3 The UG to CFG compiler The experiments are divided into four groups, as fol-

The basic compilation mechanism for tR&EGU-  lows:

LUS UG to CFG compilerenumerative expansion

is described in (Rayner et al., 2001a). The com- 1. Comparison of recognisers derived from gen-

piler essentially performs non-deterministic expan-  eral grammars and recognisers derived from

sion of the unification grammar to yield a context- hand-coded grammars (Section 3.1).

free grammar, and then filters the result to remove

unreachable rules. Although a completely naive 2. Scalability of specialised grammars with re-

implementation of enumerative expansion is insuf-  spect to size of the original general grammar

ficient for any but the very smallest grammars,  (Section 3.2).

(Rayner et al., 2001a) showed how some simple en-

hancements can greatly increase its power. In par-3. Scalability of specialised grammars with re-

ticular, it is possible to effect a major reduction in spect to size of training corpora (Section 3.3).



4. Effect of interleaved expansion and filtering At run-time, we were interested in the accuracy
on efficiency of UG to CFG compilation (Sec- of the resulting recogniser and on its speed, mea-
tion 3.4). sured on both training and test data. Grammar-based

Corpora from two domains were used in these o,J€COgNisers reject a certain proportion of their input:

perimentd. The first corpus, used in Section 3.1utterance?s are typically rejected if they are either
well outside grammar coverage, or acoustically too

was collected in the September 2002 field test for . )
. : o : oisy. We consequently present accuracy in terms of
the Mobile Agents robotic geologist’s assistant a]
L three numbersWER represents the standard word
Meteor Crater, AZ. The speech data in this corpus )
X . L ) . error rate. REJ measures the proportion of utter-
was collected in an “open-mic” configuration, where

everything spoken by the subject was recordeda,
ything sp y ) . _|usted word error rate”) measures the word error rate
whether the speech was intended for the robotic as- ) .
) . : ) : on the utterances that were not rejected. Speed is
sistant or not, and is acoustically noisy, since the

. : .. as usual measured as a multiple of real-time. Ex-
data was collected either from a subject inside a b

space suit, or outdoors in high wind. The Mobil eriments were run on a 1.9 GHz Pentium 4, using

Agents corpus used in our experiment contains Gdguance 8 and SICStus 3.8.5.

in domain utterances (3535 words) from 8 speakers, 1 Specialised versus hand-coded grammars
which we divided into a 485 utterance training sell_he data collected in the Mobile Agents field

and a 123 utterance test set. { dal del derived f hand
The remaining experiments were run on the PeF-eS, usec a fanguage model derived from & hand-
. gptlmlsed unification grammar. Due to the existence

collected in user tests of the PSA system. The PSQ]c thls_ hand-pptlmlzed grammat, the Mobile Agent§
main provided the best comparison of hand-built

corpus has 10513 utterances (38943 words) froméjf) ¢ ticall ted. After the field test. th
speakers, which we divided into a training set o%o automatically generated. erthe lield test, the

5394 utterances and a test set of 5119 utteranceﬂ's8 > utterance training set was used to build a spe-

It is worth mentioning that the length distribution cialised grammar from the general grammar. The

on this corpus is extremely skewed. A little morespemallsed version was b.u”t in one day, and un-
rwent no additional tuning. Table 2 compares

than half the corpus (5344 utterances) consists . - .
e performance of this specialised grammar with

one-word yes/no responses; the remaining 5169 L} -
y P g the hand-coded grammar on the training and test

terances have a mean length of 6.5 words. The te A .
ets respectively. The specialised grammar performs

sets for both corpora were unseen data for the pu? i I I t-performing the hand-coded
poses of these experiments. quite well, generally out-performing the hand-code

We used thexxx system to compile a variety grammar. The results also demonstrate that it is pos-
of language models and associated recognisers ible to build effective specialised grammars in this

ing the general grammar of Section 2.1 and th omain from relatively small amounts of training
methods of Section 2.2 and 2.3. We evaluated th gta.

language models and recognisers both in terms Of \/grsion WER | REJT AWER | xCPUrt
compile-time and run-time performance. With ref; %) | %) | (%) (%)
erence to the compilation process, we were intef- Me
ested in the fume_z taken to perform EBL-based graMHand-Coded
mar specialisation EBL _T), time taken to com-
pile the specialised unification grammar into a CF(
language modelUG_CFG_T), and the number of
nodes in the Nuance recognition package’s node @
ray #Nodes.

“We have concentrated on these two domains here, sindable 2: Comparing an automatically specialised

they are the ones for which we have best data. Two of the Othﬁframmar with a hand-coded grammar: WER, pro-
systems built usingxx are in parallel being submitted to the . . . ) '
demo track at this conference. portion rejected, adjusted WER and speed.

asured on training set

12.56| 7.72| 4.54 | 58.79
.. Specialised|| 5.29 | 1.86| 3.21 11.78
il Measured on test set
,Hand-Coded| 9.50 | 7.50| 3.25 57.50
" Specialised || 5.49 | 2.44| 291 | 13.74




3.2 Scalability of general grammars Version | EBL_T | UG.CFG.T | #Nodes
The experiments reported in this section investi- (secs) | (secs)

gate scalability with respect to the size of the gen- 1 110 28 2590
eral unification grammar. We trained versions of 2 155 51 10035
the domain-specific PSA grammar on reconstructed 3 205 55 12768
versions of the general unification grammar corrg- 4 300 65 12760
sponding to merges of increasingly large numbers of 5 341 85 14540
domains, ending with a grammar that merged all six 6 409 84 14540

domains. Table 3 presents statistics on the sizes of

the various versions, measured in terms of the numaple 4: Compile-time behaviour with increasingly
bers of rules and features large general grammars: time for EBL processing,

time for compilation to CFG form, and number of

Version | Domains| #Rules| #Feats nodes in resulting recogniser. Grammar versions as
included in Table 3.
1 PSA 70 42
2 PSA,HA 4 46 3.3 Scalability of training corpora
3 PSAHA | 106 56
D We next investigated the effects on compile-time and
4 PSAHA| 127 64 run-time performance as we increased the number
TD,MST of training examples used in the EBL specialisation
5 PSAHA| 139 68 process. We again used the PSA domain for the ex-
TD,MST periments. Table 6 suggests that compile times grow
IPA at most linearly with the size of the corpus, and that
6 PSAHA| 145 68 the size of the node array grows sub-linearly.
TD,MST The runtime performance figures in Table 7 sug-
IPA,MA gests that recogniser performance tops out fairly

quickly; the error rates for 5000 training examples
Table 3: Versions of the general grammar used faire only marginally better than those for 2500.
grammar scaling experiments. Domain abbrevia-

tions as in Table 1. 3.4 Interleaved expansion and filtering

It seemed to us that increasing the size of the gefrinally, we investigated the value of interleaving ex-
eral grammar could potentially cause two undesifPansion and filtering in the UG to CFG compilation
able effects. Firstly, compile times could increasétage (cf. Section 2.3). By suppressing features, we
unmanageably; secondly, runtime performance ¢reated a series of versions of the specialised PSA
the resulting recognisers could be adversely afframmar with the same number of rules, but increas-
fected. In fact, the experiments suggest that neith&tg numbers of features. We then attempted to com-
of these things happens. Table 4 shows a fairly modpile these grammars using a version of the compiler
est increase in compile times and node arrays as théich carried out a single expansion step which ex-
size of the general grammar increases. A large patended all features simultaneously, followed by a
of the increase occurred in the move from Versiogingle filtering step.

1 to Version 2; this appears to be due to the fact In Table 8 we see that the number of expanded
that noun compounding rules appeared at this poimyles and the compilation time both increase rapidly,
significantly increasing grammar coverage and coand exceeded resource bounds when the grammar
respondingly decreasing WER. Table 5 shows thaeached 40 features. These results contrast sharply
word error rates and rejection rates remain stabljith those in Table 4, where compilation times in-
and processing speed decreases only slightly as thiease only slowly as the grammar grows from 42
size of the general grammar increases. features (Version 1) to 68 features (Version 6).



Version || WER | REJ | AWER | xCPUrt #Examples|| EBL_T | UG_.CFG.T | #Nodes
(%) | (%) | (%) (%) (secs) |  (secs)
Measured on training set 250 21 22 4067
1 20.64| 5.66| 10.99 | 6.43 500 40 27 9236
2 10.32| 2.02| 7.01 9.57 1000 79 40 12545
3 10.27| 1.73| 7.42 10.29 2500 194 63 12827
4 10.25| 1.65| 7.52 10.83 5000 385 84 14462
5 10.26| 1.69| 7.46 11.69 o , o _
6 10261 1.691 7.46 11.63 Table 6: 'C'omplle—tlme behawour with mcreasmgly
Measured on test set I_arge training _co_rpora: time for EBL processing,
1 52611 6221 1246 660 time fo.r compl!atlon to CFG form, and number of
> 13881 243 957 1011 nodes in resulting recogniser.
3 |1417/2.23) 10.34 | 10.93 #Examples| WER | REJ| AWER | xCPUIt
4 14.08| 2.11| 10.39 | 11.48 %) | (%) (%) (%)
g ﬂig ;g 1832 5;2 Measured on training set
- - . . 250 16.12| 3.01| 11.33 | 5.25

Table 5: Runtime behavior with increasingly large 500 13.33] 246| 945 | 6.03
general grammars: WER, proportion rejected, ag- 1000 12.09] 2.09| 879 | 7.64
justed WER and speed. Grammar versions as in Ta- 2500 11.19]| 1.95| 7.71 9.39

ble 3. 5000 10.39| 1.76| 7.45 11.90
Measured on test set

500 17.30| 3.84| 11.23 6.17
This paper has described an approach to grammar- 1000 16.63| 3.58| 10.86 7.67

based language modelling, in which all models are— 2500 1491] 2.35| 10.72 | 9.70
derived from a single linguistically motivated uni- 5000 1425 220 1047 | 12.29
fication grammar. Domain-specific CFG language
models are produced by first specialising the gramFable 7: Runtime behavior with increasing size of
mar using an automatic corpus-based method, aféining corpus: WER, proportion rejected, adjusted
then compiling the resulting specialised grammarg/ER and speed.

into CFG form. We have presented results show-

ing that recognisers for multiple, fairly different, do_compilation operations, are all Open Source, and

mains can be derived from a single general gram-. :
: . W*” soon be made generally available to the com-
mar. The process remains tractable as the size of . ' . . .
. mﬁmlty. The final version of the paper will contain
the general grammar increases, and also scales wel : . )
. . o instructions for accessing and downloading them.
with the size of the training corpus used. We have

also shown that a simple method for compiling uni-
fication grammars into CFG form can be succes$zeferences
fully applied to grammars containing large numbers

of features, if it is enhanced by suitable interleaving®- Aist, J. Dowding, B.A. Hockey, and J. Hieronymus.
fthe expansion and filtering stages 2002. An intelligent procedure assistant for astro-
0 P g stages. naut training and support. IRroceedings of the 40th

Based on experience with other broad-coverage Annual Meeting of the Association for Computational
grammars, we believe that our current general gram- Linguistics (demo trackPhiladelphia, PA.

mar will only need to become moderately larger in

. . . Bos, 2002. UNIANCE: A compiler that
order to achieve very reasonable cross-domain CO\J/_tranSIateS unification  grammars  into  GSL

erage for a large variety of domains. The grammar, http://www.iccs.informatics.ed.ac.uk/ jbos/-
and the tools used to perform the specialisation and systems.html. As of 28 February 2002.




#Featureg| Rules| Rules| Time Annual Meeting of the Association for Computational
before after | (secs) Linguistics (demo track)Philadelphia, PA.
filtering | filtering M. Rayner, D. Carter, and C. Samuelsson. 2000a. Gram-
5 378 342 0.2 mar specialisation. In M. Rayner, D. Carter, P. Bouil-
10 412 364 0.1 lon, V. Digalakis, and M. Wirén, editordhe Spoken
15 735 367 0.2 Language TranslatorCambridge University Press.
20 771 388 0.2 M. Rayner, B.A. Hockey, and F. James. 2000b. A
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30 2027 468 0.7 6th Applied Natural Language Processing Conference
35 9245 1052 5.1 Seattle, WA.
36 56849 1082 >3 M. Rayner, B.A. Hockey, and F. James. 2000c. Compil
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